Instability of Quantum de Sitter Spacetime

Written by: Stephen Hsu

Primary Source: Information Processing

New paper! We show that quantum effects (in particular, the horizon temperature originally discovered by Gibbons and Hawking) modify the geometry of de Sitter spacetime.

Instability of Quantum de Sitter Spacetime (

Chiu Man Ho, Stephen D. H. Hsu

Quantized fields (e.g., the graviton itself) in de Sitter (dS) spacetime lead to particle production: specifically, we consider a thermal spectrum resulting from the dS (horizon) temperature. The energy required to excite these particles reduces slightly the rate of expansion and eventually modifies the semiclassical spacetime geometry. The resulting manifold no longer has constant curvature nor time reversal invariance, and back-reaction renders the classical dS background unstable to perturbations. In the case of AdS, there exists a global static vacuum state; in this state there is no particle production and the analogous instability does not arise.

The following two tabs change content below.
Stephen Hsu
Stephen Hsu is vice president for Research and Graduate Studies at Michigan State University. He also serves as scientific adviser to BGI (formerly Beijing Genomics Institute) and as a member of its Cognitive Genomics Lab. Hsu’s primary work has been in applications of quantum field theory, particularly to problems in quantum chromodynamics, dark energy, black holes, entropy bounds, and particle physics beyond the standard model. He has also made contributions to genomics and bioinformatics, the theory of modern finance, and in encryption and information security. Founder of two Silicon Valley companies—SafeWeb, a pioneer in SSL VPN (Secure Sockets Layer Virtual Private Networks) appliances, which was acquired by Symantec in 2003, and Robot Genius Inc., which developed anti-malware technologies—Hsu has given invited research seminars and colloquia at leading research universities and laboratories around the world.
Stephen Hsu

Latest posts by Stephen Hsu (see all)