Answer in Genesis affirms evolution, sort of

Written by: Bjørn Østman

Primary Source: Pleiotropy

Answer is Genesis (i.e., Ken Ham and the Creation Museum) has published a really nice description of the bedbug paper that came out earlier this year. The story is in short that bedbugs used to be one species feeding on bat blood, but now they are in the process of splitting into two species, with one specializing on humans. This has been going on for quite a while, but evolution is – mostly – a slow process, so have a little patience, yeah?In Bedbugs, Scientists See a Model of Evolution, New York Times, by Carl Zimmer

In Bedbugs, Scientists Don’t See a Model of Evolution, AiG, Dr. Elizabeth Mitchell

Dr. Mitchell (she’s an obstetrician, by the way) writes that

Genetic analysis supports the hypothesis that today’s common bedbug originated in bat-caves and, having transitioned to cave-dwelling people, then developed populations with a preference for people and people’s houses.

That’s what I call evolution, rather than development. But she won’t go that far:

The bedbug does provide a living laboratory to study speciation—which is limited to variation within a created kind—but it does not provide a laboratory to show how new, more complex forms of living things evolve as Darwin poetically and imaginatively asserted.

Here’s her great description of natural selection

About 90% of the bedbugs infesting homes today are resistant to pyrethroid insecticides. However, any reports of rapidly “evolving resistance” are poorly worded. Bedbugs remain bedbugs. They don’t evolve into anything. Those genetically equipped to survive the assault of pesticides have restored their populations with pesticide resistant offspring. This is an example of natural selection (and possibly other mechanisms), as pesticide-resistant individuals selectively survive to breed another day.

But why is this not evolution, then?

There is nothing in this research either reminiscent or predictive of the evolution of increasingly complex “new forms” either wonderful or dreadful. Instead, what this research demonstrates is that bedbugs are still bedbugs, varying within their created kind to survive and thrive in a sin-cursed world.

Hold on! She just described how the human variety has evolved resistance to pesticides, so what gives? Note that the scientific jargon is that development is how an organism changes in its lifetime, while evolution is how the population changes over the generations. Pesticide resistance is not something that an individual bedbug first doesn’t have, then experiences pesticide, and the develops resistance. No, either an individual has it from birth through genetics or not, just as Mitchell so eloquently describes the process. So pesticide resistance is exactly a new feature, an increase in information about the environment = an increase in complexity, through evolution by natural selection. I can only conclude that Mitchell both understands evolution and believes that it occurs.

But you know, she has a book:

But as we infer from Genesis 1 and observe in biology, living things—including bedbugs—only reproduce and vary within their created kinds. Bedbug research actually affirms this scriptural truth rather than lending any support to the bacteria-to-bedbug fallacies of Darwinian evolution.

So with semantic tricks this is not evolution because it is development, and because, even though she agrees that this is an example of speciation, it is only variation within a created kind. This kind is not defined here, and I have never seen a rigorous, scientific definition (though I’ve seen one based on the Bible), so it remains a questions of semantics that this is not evolution. But I am happy that she agrees that speciation occurs.  \o/ – See more at: http://pleiotropy.fieldofscience.com/2015/02/answer-in-genesis-affirms-evolution.html#sthash.JuwtyQmi.dpuf

The following two tabs change content below.
Bjørn Østman
Bjørn Østman is an evolutionary biologist postdoc working in the BEACON Center for the Study of Evolution in Action.
I am interested in many aspects of evolution. I work in computational biology, using various approaches to learn about fundamental processes of evolution. Bioinformatics is good for learning about real genes (data generously supplied by other researchers), and simulations are good for testing the mechanisms of evolution. I am particularly interested in how populations and organisms adapt to changing environments, both at the genetic and phenotypic level. Lately my research has focused on the evolutionary dynamics of populations evolving in rugged fitness landscapes.
Bjørn Østman

Latest posts by Bjørn Østman (see all)