Astrophysical Constraints on Dark Energy v2

Written by: Stephen Hsu

Primary Source: Information Processing

This is v2 of a draft we posted earlier in the year. The new version has much more detail on whether rotation curve measurements of an isolated dwarf galaxy might be able to constrain the local dark energy density. As we state in the paper (c is the local dark energy density):

In Table V, we simulate the results of measurements on v 2 (r) with corresponding error of 1%. We take ρ0 ∼ 0.2 GeV cm−3 and Rs ∼ 0.795 kpc for the dwarf galaxies. We vary the number of satellites N and their (randomly generated) orbital radii. For example, at 95% confidence level, one could bound c to be positive using 5 satellites at r ∼ 1 − 10 kpc. In order to bound c close to its cosmological value, one would need, e.g., at least 5 satellites at r ∼ 10 − 20 kpc or 10 satellites at r ∼ 5 − 15 kpc.

… In Table VI, we simulate the results from measurements on v2(r), assuming that the corresponding error is 5%. Again, we take ρ0 ∼ 0.2 GeV cm−3 and Rs ∼ 0.795 kpc for the dwarf galaxies. The table indicates that even at the sensitivity of 5%, one could rule out (at 95% confidence level) any Λ that is significantly larger than 1.58×10−84 GeV2 by using, e.g., 5 satellites at r ∼ 1−10 kpc. The very existence of satellites of dwarf galaxies (even those close to the Milky Way, and hence subject to significant tidal forces that limit r) provides an upper limit on the local dark energy density, probably no more than an order of magnitude larger than the cosmological value.

Since we are not real astronomers, it is unclear to us whether measurements of the type described above are pure science fiction or something possible, say, in the next 10-20 years. Multiple conversations with astronomers (and referees) have failed to completely resolve this issue. Note that papers in reference [11] (Swaters et al.) report velocity measurements for satellites of dwarf galaxies at radii ~ 10 kpc with existing technology.

Astrophysical Constraints on Dark Energy

Chiu Man Ho, Stephen D. H. Hsu
(Submitted on 23 Jan 2015 (v1), last revised 3 Jul 2015 (this version, v2))

Dark energy (i.e., a cosmological constant) leads, in the Newtonian approximation, to a repulsive force which grows linearly with distance and which can have astrophysical consequences. For example, the dark energy force overcomes the gravitational attraction from an isolated object (e.g., dwarf galaxy) of mass 107M⊙ at a distance of 23 kpc. Observable velocities of bound satellites (rotation curves) could be significantly affected, and therefore used to measure or constrain the dark energy density. Here, {\it isolated} means that the gravitational effect of large nearby galaxies (specifically, of their dark matter halos) is negligible; examples of isolated dwarf galaxies include Antlia or DDO 190.

The following two tabs change content below.
Stephen Hsu
Stephen Hsu is vice president for Research and Graduate Studies at Michigan State University. He also serves as scientific adviser to BGI (formerly Beijing Genomics Institute) and as a member of its Cognitive Genomics Lab. Hsu’s primary work has been in applications of quantum field theory, particularly to problems in quantum chromodynamics, dark energy, black holes, entropy bounds, and particle physics beyond the standard model. He has also made contributions to genomics and bioinformatics, the theory of modern finance, and in encryption and information security. Founder of two Silicon Valley companies—SafeWeb, a pioneer in SSL VPN (Secure Sockets Layer Virtual Private Networks) appliances, which was acquired by Symantec in 2003, and Robot Genius Inc., which developed anti-malware technologies—Hsu has given invited research seminars and colloquia at leading research universities and laboratories around the world.
Stephen Hsu

Latest posts by Stephen Hsu (see all)