Moore’s Law and AI

Written by: Stephen Hsu

Primary Source:  Information Processing

By now you’ve probably heard that Moore’s Law is really dead. So dead that the semiconductor industry roadmap for keeping it on track has more or less been abandoned: see, e.g., here, here or here. (Reported on this blog 2 years ago!)

What I have not yet seen discussed is how a significantly reduced rate of improvement in hardware capability will affect AI and the arrival of the dreaded (in some quarters) Singularity. The fundamental physical problems associated with ~ nm scale feature size could take decades or more to overcome. How much faster are today’s cars and airplanes than those of 50 years ago?

(Hint to technocratic planners: invest more in physicists, chemists, and materials scientists. The recent explosion in value from technology has been driven by physical science; software gets way too much credit. From the former we got a factor of a million or more in compute power, data storage, and bandwidth. From the latter, we gained (perhaps) an order of magnitude or two in effectiveness: how much better are current OSes and programming languages than Unix and C, both of which are ~50 years old now?)

HLMI = ‘high–level machine intelligence’ = one that can carry out most human professions at least as well as a typical human. (From Minds and Machines.)

Of relevance to this discussion: a big chunk of AlphaGo‘s performance improvement over other Go programs is due to raw compute power (link via Jess Riedel). The vertical axis is ELO score. You can see that without multi-GPU compute, AlphaGo has relatively pedestrian strength.

(ELO range 2000-3000 spans amateur to lower professional Go ranks. I think the compute power affects depth of Monte Carlo Tree Search, but not the initial training of the value and policy neural networks using KGS Go server positions.)

The following two tabs change content below.
Stephen Hsu
Stephen Hsu is vice president for Research and Graduate Studies at Michigan State University. He also serves as scientific adviser to BGI (formerly Beijing Genomics Institute) and as a member of its Cognitive Genomics Lab. Hsu’s primary work has been in applications of quantum field theory, particularly to problems in quantum chromodynamics, dark energy, black holes, entropy bounds, and particle physics beyond the standard model. He has also made contributions to genomics and bioinformatics, the theory of modern finance, and in encryption and information security. Founder of two Silicon Valley companies—SafeWeb, a pioneer in SSL VPN (Secure Sockets Layer Virtual Private Networks) appliances, which was acquired by Symantec in 2003, and Robot Genius Inc., which developed anti-malware technologies—Hsu has given invited research seminars and colloquia at leading research universities and laboratories around the world.
Stephen Hsu

Latest posts by Stephen Hsu (see all)